Search for Exotic Baryons with a K+ Beam

K. Hicks, Ohio U.
Rare Kaon Decay Workshop
August 21, 2009

My Assumptions

- Everyone here knows about pentaquarks.
- The pentaquark is not yet "dead".
 - Let's look at the evidence.
- The new LEPS data
 - Published in 2009, it supports the pentaquark.
 - Can it be reproduced at higher statistics?
- A K⁺ beam experiment at Fermilab could settle the issue.

The 1st Five Measurements

Original Result

Repeat Measurement

Collab	React	σ's	Collab	React	Incr	Result
LEPS	γ C->K+K-	~4	LEPS	$\gamma d -> K^+K^-$	~5	~5σ
Diana	K+X0 > 0	4	Belle	"K+"Si	~10	Γ_{Θ} <1
CLAS	K+K-pn	~5	CLAS	same	~30	σ<3 nb
Saphir	γp >KK+n	-5	CLAS	same	>10	σ<1 nb
hermes	ed >K ⁰ p	4	Babar	eA->K ⁰ p	>100	???

Suppressed Kinematics

Other Facts

- Many high-energy experiments with high statistics do not see the ⊕⁺.
- The KN scattering database: if the Θ^+ exists, it width Γ < 1 MeV.
 - No other strongly-decaying resonance has such a small width.
 - There could be strong suppression of the width due to its wave function.

Experimental Situation

- There are many null results.
 - No Θ⁺ from e⁺e⁻ or high energy collisions.
 - 3 positive cases repeated, all null results.
- Only 2-3 results still appear viable:
 - LEPS γ d → K⁺ K⁻ X (forward angle).
 - − CLAS $\gamma p \rightarrow \pi^+ K^- K^+ n (\pi^+ \text{ goes forward}).$
 - DIANA bubble chamber data (reproduced?)

Lattice Calculations

- Many lattice calculations were done for the spin-parity ½+ and ½-.
 - Virtually all agree: no pentaquark signal.
- Two lattice calculations done for J=3/2.
 - Best is Lasscock et al., hep-lat/0504015.
 - Lattice signature: binding increases for lower pion mass—seen for all known baryons.
 - Study was redone with higher lattice statistics.

Exclusion Regions for ⊕+

The LEPS deuterium data

- Deuterium data taken in 2002-3.
 - First publication was from a carbon target
- Deuterium data: factor of 8 higher statistics than carbon result.
- Background is better understood.

The Result

T. Nakano et al. (LEPS Collaboration), Phys. Rev. C 79, 025210 (2009).

The Next Step

- There is another LEPS deuterium data set with twice the statistics.
 - We plan to do a "blind" analysis: same cuts.
 - Repeatability is the key to whether it's real.
 - New analysis techniques were developed for this analysis: MMSA and RMM methods.
- If the Θ⁺ is real, then it needs to be confirmed by some other experiment.

PWA of K+N data by Gibbs

arXiv: nucl-th/0405024

arXiv: nucl-th/0611095

Includes a pion in the final state!

(-decay Workshop

Conclusions from Gibbs (2006)

"The presence of a narrow pentaquark state would facilitate the understanding of pion production in the T=1 channel. In fact, the best way to look for a narrow resonance may be to produce it and look for a sudden change in the inelastic cross section. This was the way in which the existence of the J/psi was first indicated."

E494 Detector as Example

Add Liquid Deuterium target here

Summary

- Theory suggests that it is still possible that a Θ⁺ pentaquark exists with J^P=3/2⁺.
- Experiments suggest that only a small kinematic window is available to the Θ⁺.
 - The LEPS experiment is in this window.
- A measurement of the K+d total cross section at Fermilab would be conclusive.
 - A real resonance MUST be seen there.